1 Discussion of HESSI Symbols

There are a great number of algebraic quantities involved in imaging spectroscopy with the HESSI instrument, so it is worthwhile adopting some conventions on what symbols we will use. This is a first stab at choosing a set of unique symbols for HESSI imaging. Later we should add more symbols relevant to spectroscopy.

Symbol	Meaning	IDL var
t	Time (usually in binary μ s)	time
N	Number of counts per time bin	n_bin
x^A, y^A	Yaw, pitch sun-center offset in spacecraft coordinates (μ radians)	x_sc,y_sc
X_m, Y_m	Pixel m offset from map center in inertial coordinates	X_{sun}, Y_{sun}
α	Roll angle (μ radians), measured CCW from X axis	alpha
β	Grid orientation in spacecraft coordinates (μ radians)	${ m beta}$
X^M, Y^M	Map center offset from Sun center in inertial coordinates	xm_sun,ym_sun
x^M, y^M	Map center offset in spacecraft coordinates	${ m xm_sc,ym_sc}$
	$x^{M}=x^{A}+X^{M}coslpha+Y^{M}sinlpha$	
	$y^M = y^A + Y^M cos \alpha - X^M sin \alpha$	
x_m, y_m	Location of mth map pixel in spacecraft coordinates	x_sc, y_sc
au	Live time (binary fraction)	tau
T	Grid-response-matrix transmission (Step 5)	$\operatorname{gridtran}$
A	Grid-response-matrix amplitude (Step 5)	modamp
Q	Peak grid-response-matrix offset (Step 5)	${ m peak_grm_offset}$
p	Sub collimator pitch (FltPt microradians)	ang _pitch
Θ	Phase of map center relative to phase reference line (Step 6)	$phase_map_ctr$
	$\Theta = 2\pi (x^M \cos \beta + y^M \sin \beta \pm Q)/p$	
Θ	Phase of sun center relative to phase reference line	
	$\Theta_A = 2\pi (x^A cos eta + y^A sin eta \pm Q)/p$	
L_{mi}	Projected offset of pixel x_m, y_m	${ m offset_proj}$
	$L_{mi} = x_m \cos \beta + y_m \sin \beta \pm Q$	
	$=\Theta_A+X^Mcos(\alpha+eta)+Y^Msin(\alpha+eta)$	
E_{mi}	Expected counts in time bin i from pixel m:	
	$E_{mi} = F_m \tau_i T_i \{1 + \sum_h A_{ih} cos[h(2\pi L_{mi}/p \pm Q_{ih})]\}$	$counts_exp$
F	Postulated flux	flux
h	Harmonic $(1,2,3,)$	h
u,v	Coordinates in Fourier plane (visibility coverage)	\mathbf{u}, \mathbf{v}
i	Time bin index	i
m	Map pixel index	m

Guidelines:

- 1. Use Greek for angles and phases, with upper case reserved for "large" (i.e. $> 1^{\circ}$) angles.
- 2. Capital X,Y for inertial coordinates, l.c. x,y for spacecraft coordinates.
- 3. Superscripts for labels, subscripts for vector or matrix indices.
- 4. "Phase" is reserved for arguments of periodic functions, and to which arbitrary multiples of 2π can be added.